Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis.

نویسندگان

  • Denuja Karunakaran
  • A Brianne Thrush
  • My-Anh Nguyen
  • Laura Richards
  • Michele Geoffrion
  • Ragunath Singaravelu
  • Eleni Ramphos
  • Prakriti Shangari
  • Mireille Ouimet
  • John P Pezacki
  • Kathryn J Moore
  • Ljubica Perisic
  • Lars Maegdefessel
  • Ulf Hedin
  • Mary-Ellen Harper
  • Katey J Rayner
چکیده

RATIONALE Therapeutically targeting macrophage reverse cholesterol transport is a promising approach to treat atherosclerosis. Macrophage energy metabolism can significantly influence macrophage phenotype, but how this is controlled in foam cells is not known. Bioinformatic pathway analysis predicts that miR-33 represses a cluster of genes controlling cellular energy metabolism that may be important in macrophage cholesterol efflux. OBJECTIVE We hypothesized that cellular energy status can influence cholesterol efflux from macrophages, and that miR-33 reduces cholesterol efflux via repression of mitochondrial energy metabolism pathways. METHODS AND RESULTS In this study, we demonstrated that macrophage cholesterol efflux is regulated by mitochondrial ATP production, and that miR-33 controls a network of genes that synchronize mitochondrial function. Inhibition of mitochondrial ATP synthase markedly reduces macrophage cholesterol efflux capacity, and anti-miR33 required fully functional mitochondria to enhance ABCA1-mediated cholesterol efflux. Specifically, anti-miR33 derepressed the novel target genes PGC-1α, PDK4, and SLC25A25 and boosted mitochondrial respiration and production of ATP. Treatment of atherosclerotic Apoe(-/-) mice with anti-miR33 oligonucleotides reduced aortic sinus lesion area compared with controls, despite no changes in high-density lipoprotein cholesterol or other circulating lipids. Expression of miR-33a/b was markedly increased in human carotid atherosclerotic plaques compared with normal arteries, and there was a concomitant decrease in mitochondrial regulatory genes PGC-1α, SLC25A25, NRF1, and TFAM, suggesting these genes are associated with advanced atherosclerosis in humans. CONCLUSIONS This study demonstrates that anti-miR33 therapy derepresses genes that enhance mitochondrial respiration and ATP production, which in conjunction with increased ABCA1 expression, works to promote macrophage cholesterol efflux and reduce atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis.

Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33-mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrop...

متن کامل

miR33 inhibition overcomes deleterious effects of diabetes mellitus on atherosclerosis plaque regression in mice.

RATIONALE Diabetes mellitus increases cardiovascular disease risk in humans and remains elevated despite cholesterol-lowering therapy with statins. Consistent with this, in mouse models, diabetes mellitus impairs atherosclerosis plaque regression after aggressive cholesterol lowering. MicroRNA 33 (miR33) is a key negative regulator of the reverse cholesterol transport factors, ATP-binding casse...

متن کامل

Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.

Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that in...

متن کامل

The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we br...

متن کامل

Therapeutic Inhibition of miR-33 Promotes Fatty Acid Oxidation but Does Not Ameliorate Metabolic Dysfunction in Diet-Induced Obesity.

OBJECTIVE miR-33 has emerged as an important regulator of lipid homeostasis. Inhibition of miR-33 has been demonstrated as protective against atherosclerosis; however, recent studies in mice suggest that miR-33 inhibition may have adverse effects on lipid and insulin metabolism. Given the therapeutic interest in miR-33 inhibitors for treating atherosclerosis, we sought to test whether pharmacol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 2015